
The dependence of the residual value of the functional on the number of terms in the 
equation is shown in Fig. i. Analysis of this graph shows that with minimization of the 
relative deviations of the velocity, the decrease in residual value of the error is increased, 
i.e., with the given value of the total error, the equation will contain a smaller number 
of terms. 

On the basis of the foregoing, it may be concluded that the proposed method allows: 
improvement in the description of the total mass of P, v, T data as a whole; improvement in 
the reproducibility of the P, v~ T surface in the vicinity of the triple point and the sat- 
uration curve; and reduction in the number of terms in the equation of state with a speci~ 
fied level of error. 

NOTATION 

wi, weight of the i-th experimental point; Y, dependent-variable vector; X, matrix of 
the dependent-variable values; ~, absolute-deviation vector; ~, relative-deviation vector; 
Yi, value of the dependent variable at point i; x k' value of the q-th independent variable 
at point k; z, compressibility; p, density; ~ = P>Pcr' reduced density; e = Tcr/T , reduced 
temperature; T, temperature; Tcr, critical temperature;b~j, c~), d~7,~j--, parameters of the 
equation of state; h, enthalpy; Cv, isochoric specific heat; b, vector of unknown coeffi- 
cients of the equation; N, number of experimental points; M, number of coefficients of the 
equation; $. 5~. V ~-, transposed matrices, 
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GENERALIZED INTEGRAL VARIATIONAL PRINCIPLES OF PHENOMENOLOGICAL 

THERMODYNAMICS OF IRREVERSIBLE PROCESSES, AND THE NATURE OF VARIATION 

OF THERMODYNAMIC ACTION 

I. P. Vyrodov UDC 536~75 

Generalized integral variational principles of phenomenological thermodynamics 
of irreversible processes (PTIP), as formulated by the present author, are stated. 

I. Previous History of Integral Variational Principlest The first attempts of applying 
the apparatus of ordinary phenomenological thermodynamics (OPT) to dynamic systems [i] peaked 
in the construction of a linear formalism in Onsager's work [2]. The further development of 
dynamic methods of describing nonequilibrium systems [3-6] acquired global character, but 
Truesdell [6] provided a quite negative and nonobjective [7] estimate of the linear PTIP 
[2, 8]. A whole series of fundamental laws, reflecting the evolution of nonequilibrium 
thermodynamic systems, was established by means of the linear PTIP: the I. PrigogiNe mini- 
mum principle of entropy production [8], and the Onsager minimum principle of energy dissi- 
pation [2]. A generalized minimum principle of entropy production [9], following from the 
more general extremum integral variational principle in the entropy representation [i0], was 
formulated for nonlinear Onsager systems. 
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A fruitful application of the ideas of linear PTIP is reflected in [ii, 12]. However, 
the linear "credo" is overestimated in the formulation of PTIP variational principles in 
[2, 5, 13], since the choice of the dissipation potentials is essentially based on the linear 
PTIP formalism. Besides, these principles, being the basic principles of field theory in 
thermodynamics [5], are in contradiction with the requirement of their invariance with re- 
spect to Poincar~-Lorentz transformations. This unjustified heuristic approach, reducing 
in later work to conclusions from the formulated variational principles of differential 
equations of transport and hydrodynamics, cannot serve as the reason of stating general var- 
iational PTIP problems, since it cuts off the path to disclosing the nature of PTIP problems 
and to constructing its axiomatics, subsequently based on OPT ideas. These problems were 
elaborated in [9, i0, 14-27], completing the formulation of ordinary [16-19, 27, 28] and 
generalized [20, 21] PTIP variational principles. 

2. Physical Essenceof Axiomatically Closed PTIP, and Ideas of Constructing Integral 
Variational Principles of Continuous PTIP. The description of an arbitrary nonequilibrium 
dynamic system by the apparatus and formalism of OPT is possible if it is assumed that the 
thermodynamic parameters of the dynamic system depend on time autonomously. However, since 
a rigorous determination of thermodynamic parameters is given only for thermodynamically 
equilibrium and quasistatic states, for a nonequilibrium and irreversible continuous dynamic 
system at all points of space such a determination is possible only locally by means of an 
additional principle, the local equilibrium principle (LEP). A phenomenological approach 
to establishing the applicability region of LEP [21] makes it possible to determine the cor- 
relation dependence between variations of the state parameters, as well as the region of in- 
tercell dissipation. The basic laws and formalism of OPT, augmented by LEP, constitute the 
axiomatically closed nature of PTIP~ Consequently, the extremum principles of PTIP, reflect- 
ing the evolution of a dynamic system, are contained in the closed system of PTIP axioms, 
Indeed, let the thermodynamic potential z(~) be a local quantity of the continuous thermo- 
dynamic system. The additive nature of this quantity makes it possible to pass from local 
extreme principles to an integral path of varying the thermodynamic action AZ, obtained by 
means of the substantial derivative 

l i ' p A z d v d t  --- -~:5 j.i' ( % - - d i v  I~)dvdt = O, 
"v ~ Vt~ 

(1) 

if the region of integration does not contain mobile boundaries. 

In a relativistically invariant representation 

l ~ (%h, ~h,  ~hf~,  x i ) d*x  = O, (2) 

where  Xk i s  t h e  s e t  o f  n o n v a r y i n g  the rmodynamic  f u n c t i o n s ,  and t h e  v a r i a t i o n  o p e r a t o r  ~ i s  
so f a r  d e f i n e d  o n l y  i n  t h e  the rmodynamic  s e n s e .  

In the case of satisfaction of strong conservation equations, determined by the varia- 
tion conditions of the thermodynamic field functions ~ on the boundaries of the integration 
region (V,), the following Lagrange--Euler PTIP equations are valid. 

o 

as well as the Hamilton equation. 

Thus, in a closed system of PTIP axioms the integral variational principles are already 
well founded, though in themselves deprived of heuristic origin. 

3. Generalized Integral Variational Principles, and Nature of Variation. Taking into 
account the integral variational principle (i) and the representation for the generalized 
thermodynamic potentials 

h h 

Z h ~ = ~ h =  U--  ~ Ni, Z ~ = ~ h = S - -  ~z ~ ~i, (4) 
(1) (i) 

i00 



we write the generalized integral variational principles in the energy and entropy repre- 
sentations: 

i" p @ ~ d , ,  = 0, ~f = ~on~t (i = 1, 2, . . . .  k), 
;& ~lj=const ( / - - / e + ! ,  . . . ,  r), (5) 

~l * /  c o n s t  (i = 1, 9 k), i" pAi.D~d;x = 0, = - ,  " . . . .  (6) 
!>~ n y = C O r l S t  ( j = k ~  i ,  . . . ,  r). 

A variational principle follows from (5) at k = 2 for the Gibbs free energy 

6 !  p k g d ~ x  = 0, T,  p; n>  n.~ . . . . .  n,,, = cons t .  (7) 

A variational principle follows from (5) at k = 1 for the Helmholtz free energy 

5,t PA/d~x=O, T, V; n l ,  n~, . . . ,  n,,~ cons~. 
v.~ 

(8) 

A variational principle in the energy representation follows from (5) at k = 0 (the Onsager 
principle of minimum energy dissipation) 

~6ip A/vdsx=O, s, V; n~, n>  . . . ,  n , , = c o n s t .  (9) 

A variational principle in the entropy representation follows from (6) at k = 0, generalizing 
the Prigogine principle of minimum entropy production, 

~5 j' p A s d ~ x  = O, u, V; n~, rl2 . . . .  , n,,~ = const. (10) 
V4 

The variational principles (7)-(10) contain definite information on the nature of variation 
of thermodynamic parameters (continuous field functions), appearing in the thermodynamic 
Lagrangians, Naturally, certain restrictions are also imposed on the generalized thermody- 
namic forces and flows, since the latter can depend on the nonvarying parameters [20]. Taking 
into account the density of thermodynamic second-order Lagrangian in the n-dimensional space, 
one obtains the expression 

( ~  --- 1~s AXj  -y I]s == 0, ( i i )  

valid on the surface (V.) [21]. In this expression we have variations of two types, realized 
in continuous variations of the following four cases: I) Aq~o=0, ART=0; 2) Aq~--0, Axis0; 
3) A~=L0, Axj=0; 4) A~h~0, Ax~0 The first case corresponds to functional variation; 
therefore the following variational principle is valid: 

6 ,t ~ (~ - -  ~ )  d~x ~- O. (12) 
V~ 

In the second case the density of thermodynamic Hamiltonian is 

7~ = H~q~,j--~ d 0, 

and this implies [16, 17] that 

d i v I ~ = j g = - 0 ,  , , g ~ = e = ~ J q ~ / : ;  

therefore, the minimum principle of entropy production is satisfied 

(13) 

04)  

In the third case; 

A i' (~d~x = O. 

1FI ~v = O, ~ =. J~, 

(15) 

(16) 
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and we reach the minimum principle of dissipation of a Hamilton system 

6 I #gd ~X = 0 .  (17) < 

In the fourth case relationship (ii) can be satisfied under the condition 

- - =  ~--~; (18) 
Ax# 

therefore the following variational principle is valid: 

A j' (ci -- d/g,) d~x = O. (19) 
V4 

The variation principles (15) and (17) obtained by us are the generalization of the Prigogine 
minimum entropy production principle and the Onsager minimum energy dissipation principle, 
respectively, formulated by them for a restricted class of thermodynamic systems. The vari- 
ational principles (12) and (19) have a more general character. Since, without loss of gen, 
erality, (19) can contain variations of four types: total, functional, substantial, and 
local, there is no restriction on the transverse components, as imposed on the density of 
thermodynamic Lagrangian in the sense of restricted OPT. The principle (19) is realized 
when essentially dynamic conservation laws are satisfied. 

4. Derivation of Partial Extremum Principles, and Criteria of Establishing Integral 
Variational PTIP Principles. Consider the structure of the variational principle (i). For 
this we-write down 

t 2 t~ 

(20) 

Let the integral production Pz and the flow I z depend on the set of thermodynamic quantities 
of two types, I and X. For immobile boundaries of integration regions we have then 

12 t2 t~ r 
i" ~ j j~6 (Izdf) = j (~xPz -i- ~I Pz)dt-- li s (~ISF) [it = 0  

G (V) l~ G ( ) 

(21) 

o r  

(v) 
o 

T h i s  r e l a t i o n s h i p  c o n n e c t s  two e v o l u t i o n  c r i t e r i a  f o r  a known f l o w  v a r i a t i o n  6I z 
o f  t h e  s u r f a c e  (V). Under t h e  c o n d i t i o n  

(22) 

in terms 

~I Pz-- # (~I~dF) ~ 0 
(v) (23) 

follows from (22) the Glansdorff--Prigogine evolution criterion for Ps without restricting 
the generality of the dynamic equations of the nonequilibrium thermodynamic system. The 
variational equality (22) also contains other evolution criteria, determined by the boundary 
conditions for the thermodynamic system. For example, related to the inequality 

i (~ly) >~ o (24) 
(I/~) 

the following equation is satisfied: 

6~P~ + 6~ G >~0. (25) 

In the case of the linear formalism, this evolution criterion for Ps contains in it the 
Glansdorff--Prigogine evolution criterion for nonvirtual variations, since in this case 
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6.~Ps "~ ~I P s -  1 ~p~ (26) 
2 

We now show that if an arbitrary dynamic system tends to local equilibrium, then its path 
to this state is an extremum. Indeed, let a local equilibrium state not be satisfied in the 
given nonequilibrium system at momemt t, but let this state be achieved at t' > t. We sub- 
stitute into the correspondence t' = t + Ai the quantity At = Zr(t) , and assume that Tr(t) , 
being a relaxation time, is an asynchronous variation. Then, introducing the curves (el) 
and (nl), corresponding to the thermodynamic local equilibrium (z) ~ and local nonequilibrium 
parameters Fz, accompanied by a z-potential in the sense that F z § z, we write, with account 
of the properties of asynchronous variations 

t~ t~ 

S / ,~t 

V t,  I7 t~ 

(27) 

whence 

g9 

,[ i { [r ,azo - -  A l l  - ( o a z o ] & }  d r , i t  = o. 
,(. . .  

t I 

(28) 

We analyze this relation. Assuming that 

[pdz 0 (F)] At = O, (29) 

the extremum principle is then satisfied for the approach rate of an arbitrary local dynamic 
quantity to its local equilibrium state at any moment of time t, and under the integral in 
(28) one can transform from primed t to nonprimed ones: 

/,, 

( (' ipa~o (0 - a s  ( O i ~ w t =  o. (30) 

Condition (29) implies constant accelerations, the second time derivatives of thermo- 
dynamic extensive quantities. 

Thus, if the local nonequilibrium dynamic system, described by the F z parameter, tends 
to a local equilibrium state at all parts of the system, then its path is extremal with 
respect to equal-acceleration "moving" local equilibrium pAz~ If this condition is 
not satisfied, then, transforming the integrand expression, we reach an extremum principle 
for the approach velocity of the dynamic system to a local equilibrium state with a dis- 
placed relaxation time 

4 
[o (. -- ~t) -- aF (Q]dr O. 

V t l  
(31) 

The principles (28), (30) reflect the extremum character of the velocity of transition 
of a local nonequilibrium (fluctuating) system to its local equilibrium state~ This con- 
clusion has indirect confirmation in the situation of chemical reactions, treated in [29] 
from the point of view of the theory transition states. The results obtained in that work 
can be considered as a consequence of principles (28), (30) as applied to chemical reactions, 
since these principles extend to arbitrary nonequilibrium dynamic systems, tending to a local 
equilibrium state. 

As an example, Consider the variational principle in the entropy form: 

t2 f~ 

V t~ (V) G 

(32) 
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If the entropy flow Is.iS not varied on the immobile surface (V), then the following gener- 
alized differential prlnciple of minimum entropy production is valid at all points M of the 
system volume V 

6~ = 8ZIiX~ ~.0 

under the most general condition 

. . . . . .  = COFtSt: 
�9 T i v )  

(33) 

(34) 

independently of the selected formalism in the constituting equations (linear or nonlinear 
[9]), while the variation is carried out over X and I. Thus, separating in (34) N--n vanish- 
ing flows and n flows I~, represented in terms of constant thermodynamic forces Xk, we ob- 
tain the realization condition of principle (33) upon contracting the volume V to the point 
M: (V)§ 

12 

' ~ ' ( ~  II"' (Xk))----const. (34') 
(v)  i - - I  

Thus, from principle (i0) we obtain both the special case of the minimum principle for 
entropy production for linear systems due to Prigogine, and the minimum principle of entropy 
production by the present author for nonlinear Onsager systems [8, 9, 17]. 

5~ Two-Parameter Essence Density of Thermodynamic Lagrangian, and Extremum Regression 
of Local Equilibrium States. The use of only local equilibrium thermodynamic parameters in 
the density of the thermodynamic Lagrangian according to the OPT "credo," determining the 
potential characteristics and thermodynamic functions, makes it possible to describe only 
nonequilibrium dissipationless processes. In OPT, however, particularly in the Gibbs equa- 
tions, no account is taken of the fluctuations of parameters from their local equilibrium 
values. Taking into account that the thermodynamic description of a dynamic system is valid 
within the limits of thermodynamic parameter fluctuations, we can relate the nonvarying param- 
eters either to a local equilibrium state, and the varying parameters to a local nonequilib- 
rium, in analogy with the situation when a local equilibrium state is a fluctuation from 
the original equilibrium state of the whole system, or conversely. Then, along with the 
extremum of the (OA~) ~ state there also exist extrema of (OA~) states: 

Since 

~ .I ~ 2~ ~ ! (Pziz) ~ = 0, (35) 
V~ ~'4 

,i" ~ dVdt~ 8 ,I (9Az) dVdt:-= O. (36) 
V4 I/4 

~ ~ (pAz) = (pAz)0 + A(pAz) = ~0+@z~0, (37) 

the densities of thermodynamic Lagrangians in (35) and (36) are mutually related. The cor- 
responding thermodynamic systems were correspondingly named by us mutually conjugate [30]. 
The nature of fluctuation regression of local nonequilibrium thermodynamic parameters to their 
local equilibrium values has the same important feature concerning the regression of fluc- 
tuations of local equilibrium parameters to their equilibrium values, namely, that the Lag- 
rangian 

includes dissipative processes due to fluctuation breakdown of local equilibrium. The ex- 
tremum nature of the process, described by the integral variational principle 

.[ ~~ = O, (38) 

follows from the very essence of the thermodynamic description of dynamic systems, including 

local nonequilibrium. The two-parameter structure ~zz0 leads to an identical description of 
dissipative processes by means of Lagrange--Eu!er equations: 
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o f 2 ,  3 

6 2  " =0, 

62'~:~ - o, 

(39) 

(4o) 

Each of the two equa- as well as to establishing the nature of the local potential method. 
tions (35) and (36) leads to the same equations of heat and mass transfer, and in this case 
the relation of principle (38) with local potentials is easily revealed for different physi- 
cal problems. The principle (38) was also used by us for successful solution of the Benard 
problem [31], for calculating the width of a boundary layer in laminar film flow, in study- 
ing concentration profiles in chemical reactors and electrodialysis instruments, and other 
problems, carried out with co-workers in the physics department of the Krasnodar Polytechnic 
Institute. It has been established that in all cases the local potential method is, in all 
respects, inferior to the methods based on principle (38). As an example we consider the 
boundary layer problem~ 

6. Determination of Width of Dynamic Boundary Layer for Critical Laminar Film Flow. 
We consider stationary laminar flow of an incompressible liquid, flowing around a planar 
film perpendicular to the flow. The 0X axis is directed along the film, and the 0Y axis is 
directed perpendicularly to it. 

The Lagrangian density of the problem is written in the form 

(41) 

We take into account that near the critical point, selected as the origin for reference, the 
velocity and pressure distributions are determined by the equations 

u = x f '  ( y ) ,  v = - f (~), 
1 

Po -- P = -2-- pa2 [x2 + F (g)]. 

Performing the affine coordinate transformation 

[32]  

(42) 

(43) 

,f--- 

a u ,  f (tj)  = 1 F U ~  (% / 1 = ]  j -7-,  (44) 

we reduce the Lagrangian to the form 

~EEO : pxPa3 { +  [f~'O (q)'2 - -  q)c~") - -  ff,/ (qJ~2 - -  q~Oq~)] ~- qff(~l . (45)  

Substituting the density obtained into the variational principle (38), and choosing as trial 
functions 

q Y = 3 z - - 3 z  2 + z  3, % = 3 z  o - 3 z ~ + z ~  (46)  

(z = q/h), after integration and variation we obtain for the width of the boundary layer 

1;4881h 2 = 9, (47)  
whence we find 

h = 2,459. (48)  

The result obtained is a good approximation to the exact value [32] 

h = 2,4. (49) 

In the case of nonstationary flow, there appear in the Lagrangian density (41) addi- 
tional time derivatives of the field functions: 

~eEo  = 9xPa a [ ~ -  q~o -0~- 0T ] + T [q~; (if'' - -  q-qg") --(/(q>o 2 - -  q~oq~;)l + qf'q% , (50)  
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where T = t/a. We substitute the trial functions (46) into the density (50), assuming that 

the boundary layer width h is time dependent, We integrate over x and ~ and use the Lagrange-- 
Euler equation; then to determine the dynamics of the boundary layer we obtain the ordinary 
differential equation 

0.81h-~h @ 1 .4881- -9h  -z = O. (51) 

The result of integration for the initial condition h = 0 at T = 0 is 

h = 2.459 V 1 -- e -3'4z (52) 

The boundary layer width at the initial stage of development can be determined from 
the equation 

h 4.5 (53) 

As t h e  n e x t  example we c o n s i d e r  t h e  work o f  a c h e m i c a l  r e a c t o r  unde r  i s o t h e r m a l  c o n d i -  
t i o n s .  We s t u d y  t h e  e s t a b l i s h m e n t  r e g i m e ,  and a d o p t  t h e  f o l l o w i n g  a d d i t i o n a l  s i m p l i f y i n g  
a s s u m p t i o n s :  t he  l i q u i d  v e l o c i t y  v i n  t he  r e a c t o r  i s  p a r a l l e l  t o  t h e  a x i s  c o o r d i n a t e  x,  
and i s  c o n s t a n t  o v e r  t h e  whole  c r o s s  s e c t i o n .  I n  t h i s  c a s e  t h e  o r i g i n a l  e q u a t i o n  f o r  t he  
local concentration c can be written in the form 

Oc O2e 
v = D - -  - k c  ~, (54) 

Ox Ox ~ 

where D is the diffusion coefficient, and k and s are parameters characterizing the reaction 
rate. The boundary conditions are written in the form 

at x = 0 ,  c - -ca ;  x - : L ,  Oc/Ox=O, (55) 

where  L i s  t h e  r e a c t o r  s i z e  a l o n g  t h e  x a x i s .  

I n  t h e  g i v e n  example we u se  t h e  synune t r i zed  d e n s i t y  o f  the rmodynamic  p o t e n t i a l  i n  t h e  
form 

Oc Oc ~ v Oc Oc~ ~ D kc~ 
= - -  c ~  - - -  

2 , Ox Ox ) Ox Ox (56) 

It is easily seen that the Lagrange--Euler equation with the use of the thermodynamic Lagran- 
gian density (56) reduces to Eq. (54). 

We introduce one more restriction~ we put s = !. In this case one can compare the ap- 
proximate solution obtained by us with the exact one. Besides, it appears possible to com- 
pare the solution with the approximate one, obtained by the local potential method. 

We seek a solution in the form 

[1 @ aJ~(x)], (57) 
(~) 

c o = c~ 2 [1 -k a~/i (x)], (58) 
(i) 

where the functions fi can be of arbitrary shape, but must satisfy the boundary conditions 

fi(O) =0; t i (L)--  Of,(L) _0.  (59) 
8x 

The coefficients a i are subject to determination from the extremum condition, having the 
following form ~in the given case: 

/ 0 , ~ )  = 0 ,  i =  1, 2, . . . ,  n. (60) 

Substituting expansions (57), (58) into the variational equations (60), we obtain a 
system of linear algebraic equations, whose solution is not difficult. To obtain numerical 
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TABLE I. Comparison of Approximation Solution of Eq. (54) 
by the Local Potential Method (I) and the Suggested Method, 
Eq. (57) (II) for Various Approximations 

0,1 
0,3 
0,5 
0,75 
1,0 

First 
approximation 

i l i  

O, 9823 O, 8242 
0,9526 o, 5282 
O, 9303 o, 3062 
0,9128 o, i328 
0,9070 o,075 

Second 
ap~proximation 

I tI  

0,8670 0,7433 
0,6379 0,4030 
0,4300 0,2411 
0,2486 0, I950 
0,1928 0,2062 

Third 
approximation 

i H 

0,7649 0,7643 
0,4469 0,4475 
0,2665 0,2664 
0,1520 0,I514 
0,1150 0,1157 

Exac[ solu- 
tion 

0,7642 
0,4478 
0,2664 
0,15tl 
0,1159 

results we assign the physical parameters on which the constants a i depend. Let k = 1.0 
sec -~ D = 0oi m2/sec, V = 0.i m/sec, L = 1 mo In principle, one can substitute the coef- 
ficients k, D, V, and L into the equations, and, calculating the corresponding determinant, 
find the dependence of a:, a2, as on the physical parameters characterizing processes in the 
system. This is one of the advantages of the approximate methods. However, we do not explore 
this purpose here. To compare the approximate results with the exact solution, we calculate 
the coefficients a~, a2, a3. 

We use Eqs. (57), (58) to find the approximate solution (Table i)o It is seen from the 
table that the third approximation is required to obtain good agreement between the exact 
and approximate solution. If the trial functions were chosen not as polynomials, but as the 
exact solution, of exponential nature, we could confine ourselves to a lower order approxi- 
mation. 

Comparison with the approximate solution, obtained by the local potential method, makes 
it possible to draw the following conclusions. Obvoiusiy, the suggested method has better 
convergence properties in the present case. Thus, the mean relative error in the second ap- 
proximation is in the present case 25%, while the local potential method gives 50%. In the 
third approximation both methods provide an adequate solution, but the solution obtained by 
the suggested method is in better agreement with the exact solution. 

NOTATION 
O 

~, operator of thermodynamic variation; p, mass density; o z, local derivative of the 
parameter z; V4, four-dimensional volume;~_, Lagrangian density; ~k, ~k/i, thermodynamic 
functions and their derivatives with respect to four coordinates, respectively; ~l, Hi, in- 
tensive and extensive thermodynamic parameters;~, Hamiltonian density; II%j, tensor of 
generalized thermodynamic 4-momenta; Iz, flow of the parameter z; dF, element of the surface ,~(...) 
comprising the system; ( /)= dt , total derivative with respect to time; Xi, thermody- 
namic force; Pz' integral product of the parameter z. 
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